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Abstract— Learning-based methods have improved locomo-
tion skills of quadruped robots through deep reinforcement
learning. However, the sim-to-real gap and low sample efficiency
still limit the skill transfer. To address this issue, we propose
an efficient model-based learning framework that combines a
world model with a policy network. We train a differentiable
world model to predict future states and use it to directly
supervise a Variational Autoencoder (VAE)-based policy net-
work to imitate real animal behaviors. This significantly reduces
the need for real interaction data and allows for rapid policy
updates. We also develop a high-level network to track diverse
commands and trajectories. Our simulated results show a
tenfold sample efficiency increase compared to reinforcement
learning methods such as PPO. In real-world testing, our policy
achieves proficient command-following performance with only
a two-minute data collection period and generalizes well to new
speeds and paths.

I. INTRODUCTION

Learning-based methods [1], [2], [3], [4], [5], [6], [7], [8]
have recently demonstrated significant advantages in acquir-
ing agile motor skills for quadrupedal robots. In particular,
model-free deep Reinforcement Learning (RL) algorithms
enables them to mimic animal motions and displays a natural
behavior [3], [4], [9], [8], [10], [11].

However, model-free RL algorithms [12], [13], [14] usu-
ally require substantial on-policy data to improve their per-
formance. Given the cost of collecting data in simulation
compared to the real world, these algorithms often train poli-
cies in simulation and then deploy them on physical robots
through zero-shot transfer. However, the policies learned in
simulation may not consistently perform well in real-world
scenarios due to the persistent sim-to-real gap. Researchers
have attempted to mitigate this gap using techniques like
domain randomization [15] and domain adaptation within
simulation environments to enhance policy robustness. Nev-
ertheless, these techniques do not provide a fundamental
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Fig. 1: Our robot Max follows the U-shape path after fine-
tuned in the real world.

solution and cannot guarantee successful transfer. [16] ar-
gues that dynamics randomization and adaptation approaches
may not consistently address sim-to-real transfer challenges,
leaving the sim2real gap unresolved. On the other hand, an
alternative approach is to train or fine-tune the policy directly
on a real robot, which can effectively address the problem.
[17] utilizes a model-free off-policy reinforcement learning
algorithm for policy fine-tuning in the real world, albeit it
still necessitates more than 2 hours data for fine-tuning.
To increase sample efficiency, [18] adopts a model-based
reinforcement learning approach, which enables direct policy
training on the real robot. Nevertheless, since the policy net-
work is trained through a model-free reinforcement learning
algorithm, this method still requires over one hour to train a
basic policy for walking towards predefined directions.

In the realm of computer graphics, ControlVAE [19]
has demonstrated superior sample efficiency compared to
deep reinforcement learning. It achieves this by co-training
a world model with a VAE-based policy network [20].
Building on this concept, we introduce a model-based learn-
ing framework to close the sim2real gap by directly fine-
tuning policies on real robots. First we train a world model
capable of predicting several consecutive states of the robot.
Leveraging the differentiability of the world model, we can
train an end-to-end control policy by direct backpropagation.
This policy imitates reference trajectories obtained from real
dogs by interacting with the world model. Additionally, we
develop a high-level policy for generating latent variable
within the VAE [20]. This empowers the robot to follow
various high-level commands and track diverse paths.

In simulated experiments, our method exhibits a tenfold
improvement in sample efficiency compared to PPO [13],
both during training and adaptation. In real robot experi-
ments, our policy effectively tracks a oblong path at speeds



of 0.6m/s, 0.9m/s, and 1.2m/s with just 2 minutes of fine-
tuning. Furthermore, we also evaluate our policy general-
ization ability in new speed commands and unseen paths,
highlighting our method’s robust generalization capability.

In conclusion, the main contributions of this paper are:
1) We present a model-based learning framework to ac-

quire agile skills in quadrupedal robots within sim-
ulations and fine-tune them on real robots, substan-
tially enhancing the sample efficiency of learning-
based methods in the robotics domain.

2) We assess our approach in both simulation and the
real robot, demonstrating that with only 2 minutes
of fine-tuning, our robot effectively executes reference
commands.

3) We establish the generalization capability of our
method with real robot experiments, as the fine-tuned
policy follows previously unseen commands and paths.

II. RELATED WORK

As model-free deep reinforcement learning algorithms
[12], [13], [14] continue to advance rapidly, recent research
has achieved notable success in training expert policies
for quadrupedal locomotion. In contrast to classical control
methods [21], [22], [23], [24], [25], [26], [27], [28], [29],
[30], learning-based approaches harness the power of deep
neural networks to acquire agile motor skills. Notably, [3],
[4] employ PPO [13] to emulate natural motion patterns ob-
served in animals. Moreover, [8] introduces a novel approach
that incorporates terrain information while mimicking the
behavior of real animals.

However, model-free deep reinforcement learning algo-
rithms demand an enormous volume of interaction data,
making it infeasible to collect on a real robot. Consequently,
they often train the policy in simulation and attempt zero-
shot transfer into the real world. To address the sim2real
gap, [4] introduces an environmental encoding approach,
optimizing it on the real robot by maximizing total returns
for swift adaptation. It’s crucial to note that the effectiveness
of this adaptation strategy hinges on the degree of similarity
between the simulation and real-world environments and may
not be universally applicable across all tasks. Furthermore,
[8], [31], [32], [15] employ domain randomization techniques
to cultivate a robust policy and employ domain adaptation to
address the sim2real gap. While these methods can alleviate
the impact of the sim2real gap, they do not offer a fundamen-
tal solution. Notably, [16] demonstrates that their policy can
be transferred to the real robot without necessitating domain
randomization, questioning the necessity of this technique. In
summary, the challenge of transferring model-free reinforce-
ment learning policies from simulation to reality remains an
open problem.

To increase sample efficiency for reinforcement learning,
recent years have witnessed great progress in model-based
reinforcement learning algorithms [33], [34], [35]. They first
learn a dynamics model in the simulation and then improve
their policy using model-free RL with imagined data pro-
duced by the learned model. To increase the prediction power

of the world model, further research focuses on learning a
compact latent space of world model [36], [37], [38], and
also succeeds in the real robot training [18]. In this way, the
sim2real gap does not exist since they train the policy directly
in the real robot. While they can train walk policy in a real
robot in one hour, it is still not evaluated how much data
it will take to train a more complex policy like imitating
an animal or following a desired path in our task. And
since the policy is trained by the model-free reinforcement
learning algorithm, the sample efficiency is still limited.
Meanwhile, training directly in the real robot from scratch
fails to take advantage of the simulation environment. In
contrast, our method trains both the world model and control
policy in a supervised manner, resulting in significantly
enhanced sample efficiency. Additionally, we adopt a two-
stage approach that involves training the policy in simulation
to create a warm-up policy, followed by fine-tuning it in the
real world using just two minutes of data. This significantly
reduces the amount of real-world data required and enables
the learning of more sophisticated motor skills.

ControlVAE [19] is an innovative technique in computer
graphics that utilizes a VAE-based policy, supervised by a
differentiable world model. This approach provides signif-
icantly higher sample efficiency than deep reinforcement
learning algorithms, but it mainly concentrates on policy
training for human motion generation within a simulation
context. To expand on this concept, our proposed framework
combines world model and policy learning in a supervised
manner, resulting in a learning framework that enhances
training efficiency during the fine-tuning stages on a real
robot with a regularization term. Consequently, our approach
allows for deployment on a real quadrupedal robot system
with only a 2-minute fine-tuning period.

III. METHODOLOGY

Our framework contains two parts, i.e. a world model and
a control policy, as shown in Fig. 2. The world model learns
to approximate the unknown dynamics of the simulation and
the reality. Given current robot state and action, it predicts
next state. The control policy learns agile behaviors by
imitating motions from real animals. Instead of interacting
with a simulator, it directly collects samples predicted by
the trained world model. Both the world model and the
control policy are updated in a supervised manner and trained
iteratively: we first collect state-action pairs under a fixed
control policy to fit the system dynamics using the world
model. Then the control policy is updated by interacting with
the fixed world model. The whole process repeats until the
control policy converges.

A. World Model Learning

We commence by training the world model fw. It predicts
the next state based on the current state and action, utilizing
a residual form as follows:

ŝt+1 = fw(∆st |ot ,at ,π)+ st , (1)
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Fig. 2: Overview of our learning framework. The gray block
represents fixed parameters. For the command following task,
the Motor Decoder is fixed when training from scratch and
becomes trainable during real-world fine-tuning.

where fw(∆st |ot ,at ,π) is a neural network parameterized by
θw, st represents the robot state at time t, encompassing robot
position, orientation, linear velocity, angular velocity, joint
positions and joint velocities. ot corresponds to the robot
observation, including robot linear velocity, angular velocity,
joint position, and joint velocity at robot local frame. at is
the target angle for each joint which can be converted to
joint torques through a PD controller. ŝt+1 represents the
predicted state at the next time step t + 1. When training
the world model, the robot interacts with the simulator
under a fixed control policy to collect state-action sequences
τ = {s0,a0,s1,a1, ...,sn,an}. The world model is trained in
supervised learning manner with the n-step prediction loss
that is conducive to prediction in a long time horizon:

Lw
t =

n

∑
t=1
∥ŝt − st∥, (2)

where ŝt is the predicted robot state and st represents the
ground truth robot state either from simulator or from the
real robot during the fine-tuning stage.

B. Imitation Learning

In the context of the imitation task, our objective is to
imitate motion sequences collected from real animals. We
formulate this problem into an encoder-decoder architecture,
where we encode the reference motion sequence into a latent
embedding and decode this latent embedding together with
robot observation into joint motor action. We take a VAE-
based [20] architecture with an Imitation Learning Encoder
πIL(zt |ot ,qt) to encode the observation ot and a sequence
of future reference motions qt into a latent variable zt . The
Motor Decoder πM(at |ot ,zt) takes ot and zt and produces

the action at . Besides, we incorporate an additional state-
conditional prior πprior(zt |ot) to disentangle distinct skills
within the latent space, as emphasized in [19]. We model
the latent variable’s prior distribution p(zt |ot) and posterior
distribution q(zt |ot ,qt) as Gaussian distribution:

p(zt |ot)∼N (πprior(zt |ot),σ
2I),

q(zt |ot ,qt)∼N (πIL(zt |ot ,qt)+πprior(zt |ot),σ
2I), (3)

where πIL(zt |ot ,qt) and πprior(zt |ot) are neural networks
parameterized by θIL and θprior. I is a identity matrix, and σ

is a fixed standard deviation for simplicity.
The imitation learning loss is defined as follows:

LI
t = 0.6Ljpos

t +0.05Ljvel
t +0.3Lbpos

t +0.05Lbvel
t , (4)

where the joint position loss Ljpos
t , joint velocity loss Ljvel

t ,
base position loss Lbpos

t and base velocity loss Lbvel
t are

similar to the reward function in [8]:

Ljpos
t = 1− exp(−∥ ĵt − j̄t∥

2
),

Ljvel
t = 1− exp(−∥ ˆ̇jt − ¯̇jt∥

2
),

Lbpos
t = 1− exp(−20∥p̂base

t − p̄base
t ∥2−10∥îbase

t − ībase
t ∥2

),

Lbvel
t = 1− exp(−2∥ ˆ̇pbase

t − ¯̇pbase
t ∥2−0.2∥ˆ̇ibase

t − ¯̇ibase
t ∥

2
),
(5)

where j and j̇ are joint position and joint velocity, pbase and
ibase represent base position and orientation, ṗbase and i̇base

denote base velocity and base angular velocity. ˆ(·) represents
the states predicted by the world model and ¯(·) denotes the
reference motion. Since the world model is differentiable, the
gradient of the imitation loss can be calculated end-to-end
through the differential dynamics.

To ensure the latent space is well formed so that we can
further find an appropriate latent variable in the downstream
command following task, we incorporate a KL-divergence
loss for regularization:

LKL
t = DKL(q(zt |ot ,qt)||p(zt |ot))

= ∥πIL(ot ,qt)∥
2/2σ

2.
(6)

To make our policy focus on not only the next state but also
a long-term horizon, the final loss term is calculated as the
sum of n-step imitation loss, where the n-step roll out is
predicted by the world model

LIL
t =

n

∑
t=1

(LI
t +0.1LKL

t ). (7)

C. Command Following

The next step is to train a policy that follows linear velocity
and angular velocity specified by users. We introduce the
Command Following Encoder πCF(zt |ot ,ct) to encode the
commands into the latent space. Given a random command
ct = [v̄t , ω̄t ], where v̄t and ω̄t represent the desired linear
velocity in forward direction and the desired angular velocity,
the posterior distribution of latent variable zt is computed as:

q(zt |ot ,ct)∼N (πprior(zt |ot)+πCF(zt |ot ,ct),σ
2I), (8)



Algorithm 1 Fine-tune on the real robot

Require: Network parameters θw,θprior,θCF,θM, learning
rates αw,απ , update number nw,nπ , max iterations N,
samples nsample, rollout length n, replay buffer B, batch
size M

1: for i in {0...N-1} do
2: send updated control policy to the real robot
3: roll out nsample steps on the real robot, send to B

// Update the world model
4: for j in {1...nw} do
5: sample trajectories (s0,a0, ...,sn,an)1...M from B
6: compute prediction loss Lw in Eq. 2
7: θw← θw +αw∇θwLw

8: end for
// Update the control policy

9: for j in {1...nπ} do
10: sample states and commands (s0,c0)1...M from B
11: roll out n steps predicted by world model fw
12: compute LCF← ∑

n
t=1(L

CF
t +0.1Lreg

t ) in Eq. 9, 12
13: θCF← θCF +απ ∇θCF LCF

14: θM← θM +απ ∇θMLCF

15: end for
16: end for

where πCF(zt |ot ,ct) is the neural network parameterized by
θCF. Since our goal is to make the robot follow the command,
the command following loss comprises both linear velocity
loss Lv

t and angular velocity loss Lω
t :

LCF
t = 2Lv

t +Lω
t , (9)

Lv
t = 1− exp(−2|v̄t − v̂t |), (10)

Lω
t = 1− exp(−2|ω̄t − ω̂t |), (11)

where ¯(·) represents the user command while ˆ(·) is the
robot states predicted by the world model. To preserve the
naturalness of the robot behavior, we exclusively update the
command following network πCF while keeping the prior
network πprior and motor decoder πM fixed during training.

D. Fine-tune on a Real Robot

Owing to the sim-to-real gap, the policy learned from the
simulation may fail when deployed on the real robot. Hence,
we fine-tune both the Command Following Encoder and the
Motor Decoder on the real robot to follow the desired paths.
To preserve the natural behavior originating from the original
Motor Encoder πori

M , we introduce a regularization term:

Lreg
t = ∥πori

M (at |ot ,zt)−πM(at |ot ,zt)∥. (12)

The algorithm for fine-tuning in the real world is outlined in
Algorithm 1.

IV. EXPERIMENT RESULTS

In this section, we report experimental results to address
the following pivotal questions: (i) How effective is our
approach in improving sample efficiency, compared with RL
methods? (ii) How well is our fine-tuning process on the real

Fig. 3: Four types of desired paths. The red star represents
the starting point.

robot can help to close the sim-to-real gap? (iii) Does our
fine-tuned policy exhibit sufficient generalization capacity on
previously unseen tasks? We conduct experiments both in
simulation and real world. We compare our method with a
RL baseline in terms of sample efficiency. In the real world
experiment, we conduct the fine-tuning process on a real
quadrupedal robot. To further demonstrate the generalization
ability, we performance path following task on four unseen
paths.

A. Evaluation in Simulation Environments

Sample Efficiency in Imitation Learning Task. To
address the first question regarding sample efficiency, we
initially train the imitation task from scratch using Isaac
Gym [39]. Isaac Gym is a GPU-based physical simulator
simulating a batch of agents concurrently. In this task, we
simultaneously employ 128 agents for training. We compare
our method with PPO algorithm [13] with respect to the
number of samples collected from the simulator. The reward
function for PPO is defined as rt = 1− LI

t . We maintain
an identical policy network structure for both methods to
facilitate a meaningful comparison. The mean reward during
training is reported in Fig. 4(a). It demonstrates that our
method achieves a mean reward of 0.8 with approximately
5 million samples, as indicated in the read dashed line. In
contrast, the PPO algorithm requires over 70 million samples
to achieve similar results. This showcases that our method’s
sample efficiency surpasses that of PPO by over tenfold.

Sample Efficiency in Adapting to New Environments.
Directly training PPO on a real robot is dangerous and may
easily damage the robot. To compare the sample efficiency
in adapting to new environments, we introduce variations
to physical parameters in simulation and perform the fine-
tuning process to make the adaptation. For the imitation
task, we alter a number of physical parameters as shown in
Env1, TABLE I. For example, we significantly increase the
robot’s mass from 5.74 kg to 14 kg, which makes the new
environment extremely difficult for the original policy. To
emulate a scenario akin to real-world robot data collection,
we employ 2 agents in the simulation environment for both
methods. In our approach, each training iteration accumulates
3000 samples, equivalent to 1 minute of data collection given
the control frequency of 50 Hz. For PPO, policy updates
are conducted every 32 steps. Fig. 4(b) depicts the training



(𝒂) (𝒃)

(𝒄) (𝒅)

Fig. 4: (a) Training curves of the imitation learning in the
simulation. (b) Training curves of fine-tuning the imitation
learning policy in the modified simulation environment. (c)
Mean loss of fine-tuning the path following policy in three
workloads within the modified simulation environment. (d)
Mean loss of fine-tuning the path following policy under
various speeds on the real robot.

TABLE I: The physical parameters of the original and new
environments, where Ctrl Lat represents Control Latency.

Mass (kg) Kp Ctrl Lat (ms) Max Torque (Nm)
Original 5.74 50.0 0.0 18.0

Env1 14.0 40.0 6.0 16.2
Env2 5.74+3.0 50.0 6.0 18.0
Env3 5.74+5.0 50.0 6.0 18.0
Env4 5.74+7.0 50.0 6.0 18.0

curves. The plot highlights that our method attains a mean
reward of 0.8 with roughly 50,000 samples (equivalent to
approximately 17 minutes of data) in this challenging setting.
Conversely, PPO algorithm remains subpar even with ten
times the sample size.

To further investigate the performance of command fol-
lowing, we extend this task to path following, where the
robot aims at following predefined paths, as shown in Fig. 3.
We employ the pure pursuit algorithm [40] to convert the
path information to commands. In this experiment, we follow
the Oblong with a target speed of 0.9 m/s. We also create
three distinct environments, Env2, Env3, Env4, as shown in
TABLE I. To emulate the fine-tuning process in the real-
world environment, each training iteration involves collecting
1500 samples (30 seconds data). Fig. 4(c) depicts the training
curves with the loss term defined in Eq. 9. From the plot,
we observe that our approach, under workloads of 3kg, 5kg,
and 7kg,requires approximately 4 iterations (2 minutes), 6
iterations (3 minutes), and 8 iterations (4 minutes) of data
to achieve a loss of less than 0.6. This result indicates a
relatively good performance at these speeds. In comparison,
the loss of PPO remains nearly unchanged with such a
limited amount of samples, and thus we did not draw the
result. In this way, we can demonstrate the high sample
efficiency of our approach for both training and fine-tuning,

Fig. 5: Speed following at 1.2 m/s along the oblong path on
the real robot with real-world adaptation.

Fig. 6: Speed following along the oblong path on the real
robot using the original policy and the adapted policy.

adapting to different environments in both imitation learning
and path following tasks.

B. Evaluation on Real World Experiments

Adapting from Simulation to Reality. To address the
second question, we perform physical experiments using
the real robot Max. Due to the sim2real gap, the policy
trained in the simulation may fail to follow the path with the
desired speed and can exhibit significant lag behind the target
speed, especially at high target speeds. This underscores the
necessity of real-world fine-tuning. We perform three adap-
tation experiments on Oblong with target speeds of 0.6m/s,
0.9m/s, and 1.2m/s. To fine-tune the policy in the real world,
each iteration involves collecting 30 seconds of data (1500
samples) to train the world model, followed by updating the
policy network using data predicted by the adapted world
model. Fig. 4(d) displays the command following loss LCF

for four iterations (2 minutes data) with target speeds of
0.6m/s, 0.9m/s, and 1.2m/s on the real robot. TABLE II
presents the averaged linear velocity error ev =

1
n ∑

n
t=1 |v̄t− v̂t |

and angular velocity loss eω = 1
n ∑

n
t=1 |ω̄t − ω̂t | computed



TABLE II: The averaged linear velocity error ev and angular
velocity loss eω computed in a trajectory of 30s after each
iteration. Iter0 refers to the original policy without any fine-
tuning.

Speed=0.6m/s Speed=0.9m/s Speed=1.2m/s
ev eω ev eω ev eω

Iter0 0.088 0.587 0.250 0.612 0.696 0.501
Iter1 0.055 0.241 0.194 0.565 0.431 0.319
Iter2 0.047 0.232 0.098 0.297 0.148 0.276
Iter3 0.038 0.190 0.078 0.269 0.103 0.286
Iter4 0.047 0.189 0.063 0.249 0.081 0.240

TABLE III: The averaged linear velocity error ev, angular
velocity error eω , and distance error ep computed across four
paths with unseen target speeds equal to 0.7m/s, 0.8m/s and
1.0m/s.

Oblong Lemniscate
ev eω ep ev eω ep

origin 0.269 0.578 2.031 0.224 0.642 2.190
adapted 0.052 0.239 0.901 0.057 0.199 0.725

U-shape Star
ev eω ep ev eω ep

origin 0.233 0.572 1.560 0.287 0.631 2.031
adapted 0.053 0.210 0.771 0.050 0.234 0.901

within a 30-second trajectory after each iteration during the
real-world adaptation. It is evident that after the first iteration,
there is a significant decreasing in losses. Particularly for a
speed of 1.2m/s, the speed error decreases by more than
0.26m/s. After four iterations, the losses appear to converge,
and the final performance is highly effective in tracking the
commands. For example, Fig. 5(a) depicts speed tracking
at 1.2m/s on the real robot with real-world adaptation. It is
evident that in the initial policy (iteration 0), the actual speed
lags considerably behind the target speed. After the first
iteration, the actual speed can somewhat follow the target, but
it exhibits significant fluctuations. In iteration 4, the policy
effectively tracks the target speed with minimal vibration.

Generalization Ability on Unseen Scenarios. To answer
the last question, we evaluate our policy on unseen command
velocities and paths. In the previous experiment, we collect
real robot data, totaling 7.5 minutes of data with target speeds
of 0.6m/s, 0.9m/s, and 1.2m/s. We utilize this data for off-
policy fine-tuning to derive the adapted policy. We test the
generalization ability on unseen target velocities of 0.7m/s,
0.8m/s, and 1.0m/s on all paths including unseen Lemnis-
cate, U-shape, and Star. TABLE III reports averaged linear
velocity error (ev), angular velocity error (eω ), and distance
error (ep) computed over four paths lasting 30 seconds each.
The distance error is defined as ep =

1
n ∑

n
t=1∥pt− p∗t ∥, where

pt , p∗t are robot position and the target position at time t.
p∗t is derived by integrating the target speed with respect
to time. From the table, it’s evident that after off-policy
adaptation, all of the errors have decreased by over one-
half. Fig. 5 vividly demonstrates the speed tracking to follow
the oblong path on the real robot under the original policy
and the adapted one. The original policy lags behind the
target unseen speeds, whereas our adapted policy can follow
them effectively with averaged linear velocity error of around

Fig. 7: Path following on unseen paths under the original
policy and the adapted one. The z-axis represents the time
evolution, and the reference path is computed by integrating
the target speed with respect to time.

0.05m/s. Fig. 7 displays the real trajectories for tracking the
path at different unseen target speeds. From the plot, it’s
evident that the original policy lags significantly behind the
target trajectory, while our adapted policy can effectively
track it, performing even slightly faster at higher speeds.
In conclusion, the experimental results demonstrate that our
adapted policy can successfully handle unseen commands
and track unfamiliar paths, highlighting the generalization
capability of our approach.

V. CONCLUSIONS

In summary, we have introduced an efficient learning
framework designed to mimic the natural behavior of ani-
mals and enable path tracking for quadrupedal robots. Our
approach begins by training a world model and a policy
network, effectively turning it into an auto-encoder that
utilizes the differential dynamics from the world model. This
strategy significantly boosts sample efficiency, outperforming
model-free deep reinforcement learning algorithms by over
tenfold. Additionally, our method facilitates rapid policy fine-
tuning on real robots, requiring only 2 minutes of data,
and demonstrates robust generalization capabilities. Future
directions could include developing a world model with
perception information, allowing the framework to adapt
to visual locomotion across challenging terrains. The fine-
tuning algorithm can narrow the sim2real gap further and
improve the success rate of visual locomotion in challenging
environments. In conclusion, our work opens up exciting
possibilities for training complex motor skills on real robots.
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